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Integrating Artificial and Human Intelligence into Tablet Production Process
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Abstract. We developed a new machine learning-based method in order to facilitate the manufacturing
processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Tech-
nology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from
prior production runs, with machine learning algorithms that are assisted by a human operator with expert
knowledge of the production process. The process parameters encompass those that relate to the
attributes of the precursor raw materials and those that relate to the manufacturing process itself. During
manufacturing, our method allows production operator to inspect the impacts of various settings of
process parameters within their proven acceptable range with the purpose of choosing the most promising
values in advance of the actual batch manufacture. The interaction between the human operator and the
artificial intelligence system provides improved performance and quality. We successfully implemented
the method on data provided by a pharmaceutical company for a particular product, a tablet, under
development. We tested the accuracy of the method in comparison with some other machine learning
approaches. The method is especially suitable for analyzing manufacturing processes characterized by a
limited amount of data.
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optimization; tablet manufacture.

INTRODUCTION

Manufacturing of pharmaceutical products from raw ma-
terials includes a wide variety of parameters—all of which
have to be precisely adjusted in advance in order to ensure
good quality of the final product. Parameters range from the
precursor raw materials attributes, such as particle size distri-
bution, moisture content, crystallinity levels, or other physical
properties, to the production process parameters, such as
temperatures, pressures, and holding times at different stages
of the manufacturing process. While fine tuning of this multi-
tude of parameters is crucial for the optimized quality of the
final product, manual tuning is not an efficient approach as it
is time-consuming and has to be repeated every time the
attributes of the new batch of raw material change.

In 2004, the United States Food and Drug Administration
(FDA) issued a document “PAT—A Framework for Innova-
tive Pharmaceutical Development, Manufacturing, and Qual-
ity Assurance” (1). This document was written as guidance for

the pharmaceutical industry with a broad audience in different
organizational units and scientific disciplines. The goal of
Process Analytical Technology (PAT) initiative is to under-
stand and control the manufacturing process flexibly in real
time—which will provide pharmaceutical industry flexible sys-
tems for designing, analyzing, and controlling manufacturing
processes (2). The FDA expects an inverse relationship be-
tween the level of process understanding and the risk of
producing a poor quality product. PAT-inspired quality con-
trol is based on in-process electronic data rather than labora-
tory testing on a subset of the final product (as in the classical
approach); therefore, essentially, the entire production run
may be evaluated for quality control purposes and may re-
quire less restrictive regulatory approaches to manage change.
The new solution enables similar results as the existing ap-
proaches, but enables greater flexibility, i.e., adapting to a
wider range of the input options before and during the pro-
cess. In addition, it enables greater flexibility inside the target,
e.g., adapting to a specific subgroup, a subtarget inside the
target, and a potential future application. The comparison
between a classical and a PAT-inspired production process is
shown in Fig. 1.

Similar to PAT, Quality by Design (QbD) initiative is
intended to be a modern substitute to the classical pharma-
ceutical quality-by-testing paradigm in which the product
quality is ensured by raw material testing, a fixed drug product
manufacturing process, in-process material testing, and end-
product testing. QbD is aiming to achieve superior quality
with as little testing as possible by focusing the testing on a
few critical parameters and attributes that affect the product
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and the process the most. QbD elements may include the
following (3):

– Design and development of product and manufacturing
processes
– Definition of quality target product profile
– Identification of critical quality attributes, critical process
parameters, critical material attributes, and sources of variability
– Control of manufacturing processes to produce consistent
quality over time

Within QbD, process and product understanding is ideal-
ly achieved during design and development phase. Neverthe-
less, data from manufacturing experience is a proven,
valuable, and historically most frequent source of knowledge.
Often during development, the scope of process and raw
material variability is highly limited, thus preventing full ex-
ploration of the operating space. On the other hand, the scope
of observed variability increases throughout the product life
cycle. Therefore, any method that can learn from production
data is beneficial and complementary to the concept of QbD.

Many researchers are trying to implement concepts intro-
duced by PATand QbD to the production process. This can be
achieved in various ways, here divided into three groups:

– Introduction of sensors and automatic logging system into
the production line
– Introduction of new methodologies into the process design
– Improving existing processes by data analysis

Regarding the sensors, for example (4), presents a review
of a variety of experimental techniques used to monitor the
hot-melt extrusion process.

When trying to implement the PAT and QbD guidelines,
researchers often use projection-based methods (e.g.,

PCA—Principal Component Analysis, PLS—Partial Least
Squares) for data analysis. These are statistical methods that
transform a number of possibly correlated variables into a
smaller number of uncorrelated variables called principal
components (5,6). For example, such approach was applied
to crystallization process through several case studies (6).

There are several machine learning (ML) algorithms for
manufacturing process control (overview can be found in (7)).
H. Sadoyan et al. (8) used a combination of kNN clustering
and rule extraction (on an industrial example of rapid tool
making) while Cotofrei and Stoffel (9) performed ML on
events in order to construct a set of rules with various induc-
tion techniques.

Several techniques exist for analyzing large datasets. They
are suitable for processes where data is gathered automatically in
short time intervals. However, in the case of pharmaceuticals
manufacture, the amount of data may be limited both in time
resolution, of measurements (lack of automated process data
logging at the production site), as well as in the number of avail-
able examples due to the high cost of production or low number of
produced batches due to market demand considerations. More-
over, in contrast to a continuous process, where the relationship
between the inputs and the outputs is continuously monitored, the
batch quality can only be confirmed at the end of the run.

Here, we introduce a novel technique for improving
existing pharmaceutical production processes by interaction be-
tween human and artificial intelligence (AI), e.g., between AI
programs and a human operator. The method uses the data
obtained from the initial production batches and is optimized
to work on a relatively small amount of initial data, due to high
costs of obtaining it in the test runs. The data is used to construct
decision trees which are then transformed into human-under-
standable rules that will guide the production process. Supple-
mentary guidance is provided by automated machine learning
and statistical methods, which are not understandable (intui-
tive), but offer a global viewpoint as another opinion compared
to the local-oriented rules. The results are presented to the
human operator through specialized visualization techniques,
which allow operators to test several possible future settings of
parameters and inspect the resulting AI predictions. Our meth-
od was developed in cooperation with a pharmaceutical compa-
ny, using the data of a particular product, a tablet, under
development. Our approach differs from the related work in
the variety of the methods used, combined together with human
operators into one sequential iterative procedure.

PROBLEM DESCRIPTION

We address the problem of controlling an immediate
release tablet manufacturing process using process and quality
data gathered in the past. The tablet manufacturing process
for our particular product consists of six unit operations

– Raw material dispensing
– High-shear wet granulation
– Vacuum drying and cooling
– Sieving
– Final blending and lubrication
– Tablet compression

Finally, the tablet samples are tested and the quality of
the end product is established.

Fig. 1. Comparison between the classical and the PAT-inspired pro-
duction process. In the classical production process, a the path from a
very narrow raw material subspace (gray circle) to a good-quality
product (green circle) is strictly defined. A fixed production path from
slightly different starting material (white circles) results in rejected
products (red circles). Using PAT, b the flexibility of the process path
allows producing good quality product from a much wider raw mate-
rials subspace
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From a regulatory point of view, only two quality classes
matter—accepted and rejected. In reality, the quality is a
continuum, and any number of quality classes can be defined.
Data from manufacture indicated that in this particular prod-
uct, there is a tendency towards a high variability of tablet
assay between the defined sampling locations during the com-
pression process, with possible linkage to an increased vari-
ability of blend uniformity results and occasional segregation
tendencies at the beginning and the end of the compression
process. Therefore, the quality class was determined by jointly
considering the following quality testing results:

– Final blend uniformity results
– Assay variability within sampling location
– Assay variability between different sampling locations
– Deviation of assay from target at the beginning and the end
of compression

For our purpose, based on the above inputs, judgments of
three independent human experts were employed to assign
each batch to one of the following classes of product quality:
(1) high quality, (2) medium quality, and (3) rejected. The
judgments were predominantly based on the four quality test-
ing results listed above. Each expert considered the result
values and concluded on a final classification. Additionally
to the quality results, supplementary batch information data,
such as IPC values, batch record comments, etc., were consid-
ered by the experts.

The data on which the guided supervision of the
manufacturing process was to be based was collected from
29 batches of product (29 examples in ML terminology) of 4
different tablet strengths. The set of batches included process
development and validation batches. The four different tablet
strengths are proportional in mass and composition, and
are produced by the same technological process (apart
from tablet compression). Our goal was to exploit the
inherent variability present within the available develop-
ment, validation, and production data in order to extract
additional valuable knowledge. From the available data,
each batch was initially characterized by 71 features (27
raw material attributes, marked as S1–S27, and 44 process
parameters, marked as P1–P44). With the help of ML
methods and expert guidance (as discussed in the follow-
ing section), we have managed to decrease the number of
features down to the 54, shown in Table I. Nevertheless,
manual pruning of the features was done cautiously and
only those were removed for which some thorough prior
evidence of non-relevance was available.

MATERIALS AND METHODS

The approach for improving pharmaceutical production
consists of two phases: in the first phase, the classifiers to
predict the quality of the product are constructed, and in the
second phase, these classifiers are used interactively by a
human operator to guide the production.

The first phase begins with grouping the features for
machine learning based on the stage of the production. The
term features refers both to the attributes of the raw materials
and the parameters of the production process. During the
batch production, data is gathered gradually by process stages,
and decisions are taken at each stage; therefore, the values of

the features of the remaining stages of the process are not
known until the end of the current stage. To account for this
fact, the features are grouped into training sets corresponding
to the process stages: each set contains the features of its stage
and all the preceding stages. The stages and their features are
presented in Table I: the first stage is dispensing of raw mate-
rials (batch initial conditions); the second stage is the first step
of the production process, etc., until the last stage, the com-
pression of the tablets. Using several smaller subsets of the
data enables 5–10% higher classification accuracy than creat-
ing classification rules based on a complete, non-segmented
dataset.

After the grouping step, we proceed with the two main
steps of the first phase, which are motivated by the two goals
we had. First, we wanted to present the main influences on
each prediction about the quality of the product, to help the
human operator to make informed decisions. Second, we
wanted to maximize the accuracy of the prediction. The first
goal was achieved by using rules generated from decision
trees, which the operator can understand. This step is de-
scribed in the “Rules Construction” subsection. The second
goal was achieved by combining the rules with non-transpar-
ent ML methods, which is described in the “Meta-learning”
subsection.

The meta-learning step completes the first phase, which is
followed by the second phase described in the “Human-Com-
puter Interaction” subsection. All the steps of our approach
are shown in Fig. 2.

Rules Construction

The rules to predict the quality of the tablets were con-
structed in four steps. In the first step, decision trees were
built. Decision trees on small datasets such as ours tend to
overfit the data, meaning that they describe the training
data too precisely and do not generalize well to new data.
Because of that, in the second step, only the parts of the
trees found best and most reliable by human experts were
kept, while the rest of the trees were discarded. In the
third step, rules were built from the best parts of the
decision trees. In the fourth step, the rules were combined
(also taking care that the combination of rules was non-
conflict) into a single classifier.

Decision trees are used as the basis for the rules construc-
tion because they are one of the most popular forms of knowl-
edge representation. Their key advantage is that they are
understandable even to non-experts on ML. Among disad-
vantages, their classification accuracy is often not as good as
that of less understandable methods. For the construction of
decision trees, the C4.5 algorithm (10) implemented in Weka
(11) ML suite was used. The trees were constructed from each
of the seven training sets corresponding to the seven stages of
the production. Building several decision trees instead of only
one offers two important advantages. First, they increase the
reliability of the classification, as observed in several well-
known ML methods that rely on multiple classifiers, such as
bagging, boosting, and ensemble methods (12,13). Second,
more decision trees contain more features. This is important
for covering the complete design space (14), since experts
believe that every feature that they find important should be
included in the classifier.
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At the end of the tree construction, we had a set of trees
that mostly overfit the data. To improve the accuracy on new
data as well as the understandability, rules were extracted
from the trees by human experts. They were assisted by
tools that find intersections and unions of the features
used by individual rules, and check for redundancy. We
also made sure that every important feature was used at
least once. The resulting collection of rules was termed
the Tablet classifier.

Meta-learning

While the objective of the rules construction step was to
understand the main influences of features on each prediction
about the quality of the product, we also wanted to maximize
the accuracy of the predictions. This is typically achieved by
testing several algorithms and selecting the most accurate one

(11,12,15). We used C4.5 decision trees, support vector ma-
chines, bagging on decision trees, AdaBoost on decision trees,
and the Tablet classifier from the previous subsection. The
standard ML algorithms were implemented in the Weka ML
suite.

Since a combination of several algorithms typically out-
performs any single algorithm, we also tested this approach.
We combined the same algorithms that were compared indi-
vidually. First, they were combined by majority voting, which
means that the final class was the one predicted by most of the
classifiers constructed by the individual ML algorithms. Sec-
ond, they were combined by meta-learning, which means that
a meta-classifier was constructed to combine the single classi-
fiers. The meta-classifier was trained with the C4.5 ML algo-
rithm on the same features as the single classifiers (subsets of
features from Table I), to which the predictions of the single
classifiers were appended.

Table I. Selected Raw Material Attributes and Process Parameters

Name Stage Features (attributes and parameters)

S01–S21 Raw materials Active pharmaceutical ingredient: particle size distribution (Malvern)
Microcrystalline cellulose: loss on drying, sieve analysis (through 0.075 and 0.215 mm),
conductivity

Lactose: sieve analysis (through 0.250 and 0.100 mm), bulk volume, tapped volume, loss
on drying

P01 Tablet strength Tablet strength (four strengths, proportional tablet design)
P02–P15 High-shear wet granulation Granulation parameters (two predefined parameter settings), nozzle spray pattern

(narrow or wide), initial amount of granulation fluid, impeller torque after initial
addition of granulation fluid, product temperature after initial addition of granulation
fluid, additional amount of granulation fluid, impeller torque after additional amount
of granulation fluid, impeller torque difference, final product temperature, difference
between initial and final product temperature, total wet-massing time

P16-P25 Vacuum drying Vacuum pressure, product temperature after initial drying phase, sieving mesh size,
vacuum pressure of final drying phase, final product temperature, loss on drying,
possible additional drying cycle with same parameters as the final drying phase, total
drying time

P26–P29 Cooling Vacuum pressure, product temperature, cooling time, yield
P30–P31 Sieving Mesh size, yield
P32–P44 Tablet compression Tableting speed, filling speed, main pressure, filling depth, normalized filling depth (dose-

dependent), minimum punch gap, normalized minimum punch gap, de-dusting
pressure, tablet press ID (multiple presses of same make and model), average tablet
thickness, normalized average tablet thickness, tablet thickness variability, hardness,
hardness variability, disintegration time (minimum, maximum).

Class Batch quality class (1 = high, 2 = medium, 3 = rejected)

Fig. 2. Schema of the ML process. Several decision trees are automatically built, rules are extracted by experts, and meta-classifiers are used to
produce the final classifier
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Human-Computer Interaction

The Tablet classifier and meta-classifier are used as tools
for the human operator to control the manufacturing process.
There are many parameter settings that the operator would need
to examine at each step to successfully guide the process. The
operator needs not only the predicted product quality as a conse-
quence of a particular parameter setting but also an understanding
of the reasons for the prediction. To achieve such understanding,
the most relevant rules are extracted from the rule set and pre-
sented to the operator. The quality predicted is presented as a
single decimal number, computed with the meta-classifier as de-
scribed in the previous subsection (1–3, the product class).

To facilitate the decisions, the graphic user interface pre-
sents to the operator a set of two-dimensional diagrams that are
projections of the N-dimensional space (Fig. 3). At each step,
only the most relevant projections are shown to the operator,
since not all of them are important at the same time. The most
important attributes and parameters are those whose changes
will have the largest impact on the product quality. This has been
taken into account previously, in the construction of the Tablet
classifier. The operator can interactively investigate a potential
change in the selected parameter values in order to check the
improvement of the product quality. Parameters are changed by
clicking on the diagrams. At the same time, the Tablet classifier
predicts the quality of the end product. If the change causes
some other features to become problematic, they will automat-
ically be shown in a separate windowwith explanation provided.
Since a specifically trained and knowledgeable operator has
expert knowledge of the production process, he is able to make
reasonable decisions at each step. Therefore, our method will
assist him to guide the process to a good-quality final product. A
schematic representation of this approach is show in Fig. 4.
Here, it should be stressed that within a regulated environment,

Fig. 3. Interface of the visualization, modeling, and testing procedure

Fig. 4. Our approach based on the PAT initiative. The precursor raw
materials are outside the narrowly defined subspace for classical produc-
tion. Our method guides the expert user to choose the optimal param-
eters at each step in the process. At the ith step, the method indicates the
intervals where the parameters, if chosen, will lead to high (1) ormedium
(2) quality product, or the product will be rejected (3)

Table II. Comparison of the Classification Accuracy of Different
Machine Learning Methods

Method Classification accuracy (%)

Decision tree 72
Support vector machine 90
Bagging 85
AdaBoost 93
Tablet classifier 91
Majority voting 97
Meta-classifier 99.7
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there are some limitations to the nature and extent of changes
that are allowed. Therefore, additional care must be taken
during the implementation of the system to ensure adequate
qualification of involved personnel, equipment, and overall
quality systems.

RESULTS

To assess the quality of our Tablet classifier, we compared
its results to the results obtained using the four other classifiers
listed in the “Meta-learning” subsection. Since the learning
examples were sparse in the problem space, methods like
cross-validation or leave-one-out achieve accuracies close to
100%. To reasonably compare the methods, we generated syn-
thetic test examples by introducing small modifications in the
descriptions of existing examples (e.g., we slightly changed the
values of some features in the real data to generate a much

bigger training dataset). The accuracies of final predictions of
methods are presented in Table II.

A single decision tree has the lowest classification accu-
racy. Decision trees alone performed significantly worse than
the human-modified rules (Tablet classifier). The use of hu-
man expert knowledge in design of the rules therefore pro-
vides a significant advantage over these automated methods.
The only single classifier that outperformed the Tablet classi-
fier was constructed by the AdaBoost algorithm, since this
algorithm builds many decision trees and combines them. It
achieved 21 percentage points higher accuracy than a single
tree and 2 percentage points higher than the Tablet classifier.
AdaBoos t ha s the usua l advan tage o f mach ine
learning—being able to find subtle relations in the data and
quantitatively evaluate them, and additionally combines mul-
tiple trees, covering more features than single trees (feature
coverage is important [16]).

Figure 5 shows a single decision tree built on data for the
particular tablet. The C4.5 algorithm places the most impor-
tant attribute on the top of the tree; the second most impor-
tant attribute, in relation to the top attribute, is the second
from the top, and so on. Apparently, the parameter S18 (lac-
tose bulk volume in ml/5 g) is the key parameter; if smaller
than 0.5, the product will potentially be rejected (denoted by
class 3 in the left leaf of the tree). If S18 is larger than 0.5, then
parameter S19 should be tested (lactose tapped volume in ml/
5 g). If S19 is larger than 0.5, the product will be of high quality
(class 1). Otherwise, we continue down the tree, until we finish
in one of the leaves. The numbers in parentheses denote the
numbers of examples in the training data belonging to the leaf,
and the number after the slash denotes the number of exam-
ples with the parameters belonging to the leaf, but with a
different class (i.e., misclassified examples).

Figure 6 shows ameta-classification decision tree, which also
includes the outputs of single classifiers as features. One can see
that the most important parameters are the outputs of AdaBoost
and Tablet classifier, and parameters at the end of the process.

Fig. 5. Decision tree. S18 and S19 are raw material attributes; P35A is
a process parameter

Fig. 6. The meta-classification decision tree. Ada and Tablet_CL are the outputs of
AdaBoost and Tablet classifier
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DISCUSSION AND CONCLUSION

In this paper, we present a new method for the analysis
and guidance of tablet production process, using the concepts
of the PAT and QbD initiatives. We developed a new ML
method specialized for process analysis on small databases.
It combines rule construction with the help of human experts
and the induction of an ensemble of classifiers. To facilitate
the interaction with the operator, we created an application
module for the visualization and guidance of the manufactur-
ing process. The method is not intended to be used autono-
mously, but as an interactive aid to a human operator. It
enables the operator to simulate small changes in the
manufacturing process—with the system providing the visual-
ization of the consequences.

This can be illustrated by the following example. An
explorer wants to cross a frozen lake but does not know
whether the ice is thick enough to hold his weight. This is
essentially a three-dimensional problem where the parameters
are the coordinates on the lake surface (x and y) and the ice
thickness z. The program simulates the next step (in the xy
direction), checks whether the thickness of ice is sufficient,
and produces the outcome (yes/no). In case of a negative
outcome, the explorer can check the xz view to see whether
the ice is too thin at that spot. After choosing the best step, the
explorer proceeds with the next round of simulations and
eventually crosses the lake safely. The manufacturing process,
on the other hand, contains a significantly higher number of
dimensions (features)—from raw material attributes to pro-
cess parameter settings. At each step, the operator needs to
review many settings to successfully guide the process, and our
method guides him through the procedure.

Our method presents, highlights, and explains only the
most important data and events to avoid information over-
load. Additional information can be found on additional
screens when one needs supplementary explanation for the
classification. We believe that the chosen representation with
several two-dimensional graphs enables an important insight
into the ongoing production process and enables effective
human-computer interaction. Humans test, overview, com-
pare, and decide, while computers simulate consequences of
events, provide explanation, and enable quantitative and qual-
itative comparisons of various decisions.

The presented method has some limitations. First of all, it
is specialized for the task with a limited data, and might not
work as accurately as the existing methods on more typical
amounts of data. Moreover, the significant amount of expert
tuning of the method in the first stages prevents automatic

updating of the method when new data is available. Further
research into how such an approach could be automated is
desired.
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